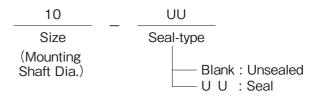

TSK **Cam Followers**

Structure & Advantages The cam follower is a compact and mighty bearing composed of both the set-in needle bearing and a stud. An outer ring contacting the surface of a counterpart rotates smoothly and can do high-speed rotation, too.

> The cam followers are widely used as the mechanism of cam, linear motion or index feeding in the industrial machines such as automatic and special-purpose machines.

Code Name	Code Name is arrang
	TCF
Track Load Capacity	The track load capac motion over a long per of an opposite track the opposite. If the hardness of the calculate the value of 1 by the coefficient of 249.


Allowable Stud Load

stud. name of stud allowable load.

Table1 Track Load Capacity Coefficient					
Hardness HRC	Elongation kgf/mm ²	Track Load Capacity Coefficient	Hardness HRC	Elongation kgf/mm ²	Track Load Capacity Coefficient
20 25 30 35 38 40 42 44	77 86 97 110 120 127 136 146	0.37 0.46 0.58 0.75 0.89 1.00 1.15 1.32	46 48 50 52 54 56 56 58	156 167 179 192 205 219 234	1.51 1.73 1.99 2.29 2.61 2.97 3.39

TSK Cam Followers

ged in the following way.

city means the allowable load which permits continual eriod of time without deforming or scratching the material by the contact of the outer ring of a cam follower with

he opposite material is different from HRC40, please of Track Load Capacity by multiplying the value in Table of Track Load Capacity in the table of dimension at page

The limitation of allowable load on a cam follower is determined by three factors. They are the capacities of needle roller bearing, track load and

The value of stud is shown in the table of dimension (P.249) under the

Accuracy

Please refer to Table 2 for the tolerance of a cam follower. Table 3 indicates the degree of the precision of outer ring. Table 4 shows the value of the radial clearance.

Load Rating & Life

Basic Dynamic Load Rating

It is the radial load which is constant direction and magnitude, under which 90% of a certain number of cam followers make 1,000,000 revolutions without fatigue.

Table 2 Deviation	Unit µm
Terminology	Metric System
Outer Ring Dia. D	Table 3
Stud Dia. d	h 7
Width W	0~-120

	nsions m		nce of r Dia.	Tolerance of Radial runout
Over	Under	Up	Down	(MAX)
6	18	0	-8	15
18	30	0	-9	15
30	50	0	-11	20
50	80	0	-13	25
80	120	0	-15	35

Note Dm : The arithmetical mean of two mea points of the outer ring diameters.

Table 4 Radial Clearance					tμm
Turpo	JIS	JIS C2		JIS C2	
Туре	Min	Max	Туре	Min	Max
TCF 6	5	20	TCF 16 TCF 18 TCF 20	10	30
TCF 8 TCF 10 TCF 12	5	25	TCF 24 TCF 30	10	40

Life

The calculation formula for the rating life is given below.

$$L = \left(\frac{ft \cdot C}{fw \cdot pc}\right)^{\frac{10}{3}} \times 10^{6}$$

$$L h = \frac{10^6 \times L}{60 \cdot n}$$

Fig.1 Temperature Coefficient

Ter	np.				
°C	100		150	20	0
	1 ' '			. [
ft	1.0	0.95	0.9	0.8	0.7

Setting

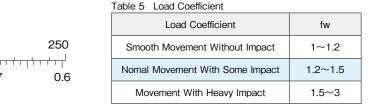
When mounting a hole for the stud, the hole should be bored so precisely that the stud will fit tightly. Tolerances are generally based on JIS H7. In case a cam follower is used with a heavy load and shock, it is necessary to bore a hole with absolutely no clearance.

The center line of a mounting hole should be at a right angle from the setting surface with a chamfer of C0.5.

The size of the setting surface should be larger than the outer diameter of stud.

As the mark TSK on the stud indicates the direction to the oil hole, set the stud so that heavy loads are not set above this mark.

Basic Static Load Rating & Static Safety Factor


As the basic static load rating (Co) is the allowable limit for maintaining the accuracy of the bearing against the static load, the load must not exceed this value. Therefore, it is necessary to set the static allowable load factor (fs) to the proper value according to the conditions of usage or the required accuracy. The value of fs can be calculated by the formula shown below.

The values for fs are presented in Table 6.

fs =	Co	
15	_	Po

- fs = Static Safety Factor
- Co = Basic Static Load Rating (kgf)
- Po = Load (kgf)

```
L=Rating Life
C=Basic Dynamic Load Rating kgf
PC=Radial Load kgf
ft=Temperature Factor (Ref.: Fig.1)
fw=Load Factor (Ref.: Table 5)
The life time can be calculated by the following fomula at the
time determinating rating life (L) shown above and the value of
rpm.
.
L h=Life Time (hr)
n = rpm
```


Table 6 Static Safety Factors				
Bearing Usage Conditions	fs			
High Speed Rotation	3			
Movement With Vibration, Shock	2			
Normal Movement	1.5			
Other Conditions	1			